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Quick recap on convex optimization

We want to minimize

f (θ) =
1

n

n∑
i=1

fi (θ)

where fi (θ) = `(yi , 〈xi , θ〉) + λ
2‖θ‖

2
2

Ridge Regression

Ridge Logistic Regression

etc.



Quick recap on convex optimization

Full (Batch) Gradient Descent

θk ← θk−1 − ηk∇f (θk−1)

You’ve seen:

If f convex and L-smooth then for ηk = 1/L

f (θk)− f (θ∗) ≤
2L‖θ0 − θ∗‖

k + 1
(1)

where θ∗ ∈ argminθ f (θ)

Acceleration (Nesterov, Fista): rate improvement O(1/k2)

Linesearch

If f is also µ-strongly convex, then linear convergence

f (θk)− f (θ∗) ≤
(

1− L

µ

)k
(f (θ0)− f (θ∗)) (2)



Stochastic optimization

What if n (and d) is large?

Each iteration of a full gradient method has complexity O(nd)

I can’t put n × d floats (32 or 64 bits) in my memory

Size of big data makes a modern computer look old: go back to
“old” algorithms

Idea: in machine learning, objective functions are averages of
losses



Stochastic Gradient Descent

If I choose uniformly at random I ∈ {1, . . . , n}, then

E[∇fI (θ)] =
1

n

n∑
i=1

∇fi (θ) = ∇f (θ)

∇fI (θ) is an unbiased but very noisy estimate of the full
gradient ∇f (θ)

Computation of ∇fI (θ) only requires the I -th line of data
(O(d) and smaller for sparse data, see next)



Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm (Robbins and Monro
1951)

At each iteration, load a line of data chosen randomly
(requires an index for fast random access on the hard drive)

Compute gradient for this line of data

Do a descent step, using this gradient, and repeat



Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

Input: starting point θ0, sequence of learning rates {ηt}t≥0
For t = 1, 2, . . . until convergence do

Pick at random (uniformly) i in {1, . . . , n}
Put

θt = θt−1 − ηt∇fi (θt−1)

Return last θt

Each iteration has complexity O(d) instead of O(nd) for full
gradient methods

Possible to reduce this to O(s) when features are s-sparse
using lazy-updates (more on this later)



Stochastic Gradient Descent

Note that if i is chosen uniformly at random in {1, . . . , n}

E[∇fi (θt−1)|Ft−1] =
1

n

n∑
i ′=1

∇fi ′(θt−1) = ∇f (θt−1)

where Ft = information until iteration t (relative to random
sampling of indexes)

Namely, SGD uses very noisy unbiased estimations of the full
gradient

Learning rate ηt usually chosen as ηt ≈ Ct−α with
α ∈ [1/2, 1].

Linesearch: ηt is a valid learning rate if

fi (θ
t − ηt∇fi (θt)) ≤ fi (θ

t)− ηt
2
‖∇fi (θt)‖22



Stochastic Gradient Descent

Polyak-Ruppert averaging (ASGD)

Use SGD iterates {θt} but return θ̄t = 1
t

∑t
t′=1 θ

t′

Computed “online”

θ̄t ← 1

t
θt−1 +

t − 1

t
θ̄t−1 (3)

Leads to better results, cf:

http://leon.bottou.org/projects/sgd

http://leon.bottou.org/projects/sgd


Stochastic Gradient Descent

Theoretical knowledge on SGD. Typical assumptions

Each fi is L-smooth (gradient L-lipshitz)

f is µ-strongly convex

Non strongly convex: rate O(1/
√
t) for ASGD with

ηt = O(1/
√
t)

µ-Strongly convex: rate O(1/(µt)) for ASGD with
ηt = O(1/(µt))

Both SGD and ASGD are slow. Best case is O(1/t) convergence
when f is strongly convex, while O(e−ρt) for FG



Beyond SGD

Recent results improve this:

Bottou and LeCun (2005)

Shalev-Shwartz et al (2007, 2009)

Nesterov et al. (2008, 2009)

Bach et al. (2011, 2012, 2014, 2015)

T. Zhang et al. (2014, 2015)



Stochastic vs Batch optimization

Gradient descent:

θt ← θt−1 − ηt
n

n∑
i=1

∇fi (θt−1)

O(nd) iteration but linear convergence O(e−ρt) (strongly cvx
case)

Stochastic gradient descent:

θt ← θt−1 − ηt∇fit (θt−1)

O(d) iteration but slow convergence O(1/t) (strongly cvx
case)

Do a fast algorithm with O(d) iteration exist?



Variance reduction

Put X = ∇fI (θ) with I uniformly chosen at random in
{1, . . . , n}
We want to use Monte Carlo samples to approximate
EX = ∇f (θ)

We find out C s.t. EC is easy to compute and such that C
highly correlated with X

Put Zα = α(X − C ) + EC for α ∈ [0, 1]. We have

EZα = αEX + (1− α)EC

and
varZα = α2(varX + varC − 2 cov(X ,C ))

Standard variance reduction: α = 1, so that EZα = EX
(unbiased)



Variance reduction

Idea: combine SGD with variance reduction

θt ← θt−1 − η
(
α
(
∇fit (θt−1)−∇fit (ϕt−1)

)
+

1

n

n∑
i=1

∇fi (ϕt−1)
)

where ∇fi (ϕt−1) is the “last computed” gradient of ∇fi along the
iterations

α = 1/n: SAG (Stochastic Average Gradient, Bach et al.
2013)

α = 1: SVRG (Stochastic Variance Reduced Gradient, T.
Zhang et al. 2015, 2015)

α = 1: SAGA (Bach et al., 2014)



Variance reduction with SAG

Stochastic Average Gradient (SAG, Bach et al. 2013)

Input: starting point θ0, learning rate η > 0

For t = 1, 2, . . . until convergence do

Pick at random (uniformly) it in {1, . . . , n}
Put

gt(i) =

{
∇fi (θt−1) if i = it

gt−1(i) otherwise

and compute

θt = θt−1 − η

n

n∑
i=1

gt(i)

Return last θt



Variance reduction with SAG

Assume

Each fi is L-smooth

f is µ-strongly convex

ηt = 1/(16L) constant

Initialize using one epoch of SGD

Non-strongly convex case:

E[f (θt)− f (θ∗)] ≤ O(

√
n

t
)

Strongly convex case:

E[f (θt)− f (θ∗)] ≤ O
( 1

nµ
+

L

n

)
exp

(
− t
( 1

8n
∧ µ

16L

))
Improves a lot FG and SGD algorithms



Variance reduction

Complexity O(d) instead of O(nd) at each iteration

Choice of a fixed step-size η > 0 possible

But extra memory required: need to save all the previous
gradients.

Hopefully
∇fi (θ) = `′(yi , 〈xi , θ〉)xi ,

so only need to save `(yi , 〈xi , θ〉). Memory footprint is O(n)
instead of O(nd). If n = 107, this is 76 Mo



Variance reduction with SAG

Comparison of convergence [Le Roux el al. 2012]



Some practical remarks: file indexing

Now some practical problems / tricks around this

Need to index large data files to be able to read lines at
random fast

Many tools to do this. In Hadoop1 there is the
ArrayFile.Reader that does that. It’s only (roughly) 3x
slower than a sequential read of the file.

Stochastic optimization algorithm also work when using
random shuffling of lines at beginning of each epoch: allows
to further improve I/O.

1

http://hadoop.apache.org



Some practical remarks: lazy updates

Feature vectors are usually very sparse (words counts). Complexity
of the iteration of a stochastic optimization algorithm can reduced
from O(d) to O(s), where s is the sparsity of the features.
Important since d ≈ 106 while s ≈ 103

For minimizing

1

n

n∑
i=1

`(yi , 〈θ, xi 〉) +
λ

2
‖θ‖22

an iteration of SGD writes

θt = (1− ηtλ)θt−1 − ηt`′(yi , 〈xi , θt−1〉)xi

If xi is s sparse, then computing ηt`
′(yi , 〈xi , θt−1〉)xi is O(s), but

(1− ηtλ)θt − 1 is O(d) ...



Some practical remarks: lazy updates

Trick: put θt = stβ
t , with st ∈ [0, 1] and st = (1− ηtλ)st−1

θt = (1− ηtλ)θt−1 − ηt`′(yi , 〈xi , θt−1〉)xi
becomes

stβ
t = (1− ηtλ)st−1β

t−1 − ηt`′(yi , st−1〈xi , βt−1〉)xi
= stβ

t−1 − ηt`′(yi , st−1〈xi , βt−1〉)xi

so the iteration is now

βt = βt−1 − ηt
st
`′(yi , st−1〈xi , βt−1〉)xi

which has complexity O(s).



Some practical remarks: lazy updates

Just check that st is not too small once in a while, in this case
put st = 1 and update θt and βt

Write the algorithm using only βt , return stβt in the end

Now, complexity of one iteration of a stochastic algorithm is O(s),
while an approach based on FG methods is O(nd) without using
sparsity



Some practical remarks: cross-validation

Choice of penalization parameter λ by V -fold with SGD
Quick recap on V -fold:

Take V = 5 or V = 10. Pick a random partition I1, . . . , IV of
{1, . . . , n}, where |Iv | ≈ n

V for any v = 1, . . . ,V



Some practical remarks: cross-validation

I don’t load the full data in memory

I can’t use V-Fold this way when I’m using an SGD-based
solver

Simple solution: when picking a line i at random in the
optimization loop, its fold number is given by i%V

Pick i uniformly at random in {1, . . . , n}
Put v = i%V

For v ′ = 1, . . . ,V with v ′ 6= v : Update θ̂v ′ using line i

Update the testing error of θ̂v using line i



Cross-validation: warm starting

So I have many optimization problems to solve for choosing λ!

If I’m using V -Fold cross-validation, and a choose a set
Λ = {λ1, . . . , λM} of values for Λ, it is V × |Λ| problems

But solutions θ̂λj−1
and θ̂λj are going to be close when λj−1

and λj are

Use warm starts:

Fix parameters λ1 < λ2 < · · · < λM

Put θ0 = 0 (I don’t know where to start)

For m = M, . . . , 1

Put λ = λm
Solve the problems starting at θ0 for this value of λ (on each
fold)
Keep the solutions θ̂ (test it, save it...)
Put θ0 ← θ̂

This allows to solve much more rapidly the sequence of problems



1 Stochastic optimization
Stochastic Gradient
Descent (SGD)
Beyond SGD

2 Supervised learning recipes
(bis)

File indexing
Lazy-updates
Cross-validation
Warm starting

3 Collaborative Filtering
Amazon, Google, Netflix
Netflix Prize
Matrix completion

4 Main Approaches
Definitions
Measures of success

Biases
CF as classification /
regression
K-NN

5 Matrix Factorization
Intro
Formulation
Link with PCA
Alternating Least-Squares
Gradient Descent
Stochastic Gradient
Descent

6 A convex formulation
Convex relaxation for the
rank
Proximal gradient descent

7 Illustrations
8 A groundbreaking theory



Collaborative Filtering

What is collaborative filtering?

Many users Many items

Based on many observed user-item interactions (rating,
purchase, click)

Predict new interactions

Does Bob like strawberries?



Collaborative Filtering

Amazon.com recommends products based on your purchases,
browsing history

but based on the purchases and history of other users too



Collaborative Filtering

Google News recommends news based on your browsing activity

but on the browsing activity of other users too



Collaborative Filtering

Netflix predicts the rating you’d give to a movie

using all the ratings given by all users

60% of Netflix’s DVD rentals due to recommandations



Collaborative Filtering

Netflix predicts the rating you’d give to a movie

using all the ratings given by all users

60% of Netflix’s DVD rentals due to recommandations



Collaborative Filtering: Netflix



Collaborative Filtering: Netflix Prize



Collaborative Filtering: Netflix Prize



Collaborative Filtering: Netflix Prize

Netflix Prize

October 2, 2006

Dataset: 100 million ratings , nU =480K users, nI =18K
movies

only 1.1% of the matrix is filled!

Goal: create a computer code that predicts ratings

$1m grand prize for anyone beating Cinematch accuracy by
10%

5000 teams over 150 countries participated



Collaborative Filtering, Matrix Completion

Collaborative Filtering, Matrix completion: fill unobserved
entries of a matrix

Unknown matrix M has size nU × nI

Observe m� nUnI entries (100m � 8.64M for Netflix)

Impossible!



Collaborative Filtering

There is hope:

Personal preferences are correlated: if Alice likes A and B and
Bob likes A,B and C , then Alice is more likely to like C

There are latent factors that describe the data in a much
lower dimensional space. Groups of users, groups of movies,
factors that explain the taste of users. High-dimensionality
but hidden low-dimensional structure

The hidden matrix is (approximately) low-rank

Collaborative Filtering task:

discover patterns (low-dimensional hidden structure, latent
factors)

use these patterns for prediction of new user-item interactions

Do not necessarily use item or user attributes (demographic
information, author, genre, cast, plot, etc.)
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Collaborative Filtering

Given:

Users u ∈ {1, . . . , nU}
Items i ∈ {1, . . . , nI}
When u has an interaction with item i , (watches the movie,
clicks on a banner, buys a product), he enters a scalar rating
ru,i (number of clicks, rating of a movie, etc.)

Set E of pairs (u, i) of observed ratings ru,i

Matrix completion problem

M =

? ? 2 · · · 5
2 ? 1 · · · ?
? 2 ? · · · 4





Collaborative Filtering

Measures of success. Decompose E = Etrain ∪ Etest into training
and testing respectively. ru,i = ground truth and r̂u,i = estimated
rating

Root Mean Square Error

RMSE =

√√√√ 1

|Etest|
∑

(u,i)∈Etest

(ru,i − r̂u,i )2

Mean Absolute Error

MAE =
1

|Etest|
∑

(u,i)∈Etest

|ru,i − r̂u,i |

Ranking error: fraction of true top-5 preferences are in my
predicted top 5?



Biases

Remove biases from the ratings

Some users give systematically higher ratings

Some items gets systematically better rates (old movies...)

Don’t forget that PCA needs centering

Remove bias
r̃u,i = ru,i − bu,i

Let’s denote

U(i) the set of users who rated item i

I (u) the set of items rated by user u



Biases

Let’s compute means! We can choose bu,i as one of the following:

Global mean

b =
1

|E |
∑

(u,i)∈E

ru,i

Item’s mean rating

bi =
1

|U(i)|
∑

u∈U(i)

ru,i

User’s mean rating

bu =
1

|I (u)|
∑
i∈I (u)

ru,i

Item’s mean rating + user’s mean deviation from item mean

bu,i = bi +
1

|I (u)|
∑

i ′∈I (u)

(ru,i ′ − bi ′)



Interpolating means

Some users have much more ratings than other (1000 ×
more!)
Users with a small numbers of ratings are not as reliable as
ones: more noisy. It’s hard to trust a mean with only one
rating!
Interpolate between a global estimate and an estimate from
user’s data

Interpolate to have a better bias estimation:

b̃u =
α

α + |I (u)|
b +

|I (u)|
α + |I (u)|

bu

where we recall that b is the global mean

b =
1

|E |
∑

(u,i)∈E

ru,i

and bu is the user’s mean

bu =
1

|I (u)|
∑
i∈I (u)

ru,i



CF as classification / regression

CF is a set of nI classifications / regression problem: one for each
i ∈ {1, . . . , nI}

Consider a fixed i

Treat each user as a vector (with many missing values) or
ratings of all item except i

The class of each user with respect to i is given by the user’s
rating

Prediction of the rating r̂u,i = classication of a user’s vector
ru,i

Reduces CF to the well-known classification problem

But, with a huge number of classes!

This approach does not take advantage of the problem
structure



K-NN

K-Nearest Neighbor Method (K-NN) most widely used family of
methods

item-based or user-based

for product recommandation: item-based

represent each item as a vector of user’s ratings with many
missing values r•,i = [2, ?, 1, ?, ?, ?, 2, 1, ?, ?, ?, 5]

Idea: users rate similar items similarly. In order to predict a rating
ru,i for user u and item i :

Compute similarity between i and every other items

Find the K items rated by u most similar to i

Compute weighted average of these ratings



K-NN: Similarity measures

How to measure similarity between items?

Cosine similarity

d(r•,i , r•,i ′) =
〈r•,i , r•,i ′〉
‖r•,i‖‖r•,i ′‖

Pearson correlation coefficient

d(r•,i , r•,i ′) =
〈r•,i − r̄•,i , r•,i ′ − r̄•,i ′〉
‖r•,i − r̄•,i‖‖r•,i ′ − r̄•,i ′‖

Inverse Euclidean distance

d(r•,i , r•,i ′) =
1

‖r•,i − r•,i ′‖

Vectors r•,i contains many missing values: compute these
similarities over subets of users that rated both items i and i ′



K-NN

How to choose the K -nearest neighbors?

Select the K items with largest similarity score to item i ,
among the items rated by u, denoted N(i , u)

Prediction given by

r̂u,i = bu,i +
∑

i ′∈N(i ,u)

wi ,j(ru,i ′ − bu,i ′)

where wi ,i ′ weights

Example of weights:

Equal weights

wi ,i ′ =
1

N(u, i)

Similarity weights

wi ,i ′ =
d(r•,i , r•,i ′)∑

i ′′∈N(i ,u) d(r•,i , r•,i ′′)



K-NN

Event better: user optimized weights.

Choose weights that best predict other known ratings of i
among all users that rated i

Corresponds to many small linear regression problems

Needs to store many weights O(n2I )

Conclusion for K-NN methods

Easy to implement

No training time

Flexible

But need to store many parameters (all item, vectors, weights
in memory)

Don’t exploit hidden low-dimensional structure



1 Stochastic optimization
Stochastic Gradient
Descent (SGD)
Beyond SGD

2 Supervised learning recipes
(bis)

File indexing
Lazy-updates
Cross-validation
Warm starting

3 Collaborative Filtering
Amazon, Google, Netflix
Netflix Prize
Matrix completion

4 Main Approaches
Definitions
Measures of success

Biases
CF as classification /
regression
K-NN

5 Matrix Factorization
Intro
Formulation
Link with PCA
Alternating Least-Squares
Gradient Descent
Stochastic Gradient
Descent

6 A convex formulation
Convex relaxation for the
rank
Proximal gradient descent

7 Illustrations
8 A groundbreaking theory



MF: if I know the item’s features

Matrix Factorization (= MF)

Assume that we know features about the items

yi = [cast, year, genre, · · · ] ∈ Rr

for all i = 1, . . . , nI .
r features for each item
We want the users parameters xu for u = 1, . . . , nU

Linear regression

x̂u ∈ argmin
xu

∑
i∈I (u)

(ru,i − 〈xu, yi 〉)2.

Even better: ridge regression

x̂u = argmin
xu

∑
i∈I (u)

(ru,i − 〈xu, yi 〉)2 + λ‖xu‖22

But we don’t want to construct ad-hoc features yi for items
Not a good idea for building recommandations



MF: if I know the user’s features

Assume that we know user’s features xu for all u = 1, . . . , nU .

r features for each user

We want the items features yi for i = 1, . . . , nI

Once again: linear regression

ŷi ∈ argmin
yi

∑
u∈U(i)

(ru,i − 〈xu, yi 〉)2.

Even better: ridge regression

ŷi ∈ argmin
yi

∑
u∈U(i)

(ru,i − 〈xu, yi 〉)2 + λ‖yi‖22

But we can’t construct ad-hoc features xu for users

Still not a good idea for building recommandations



MF: put everything together

We don’t want to construct ad-hoc features yi for items

We can’t construct ad-hoc features xu for users

So let’s learn items and users features at the same time!

Putting things together

x̂u = argmin
xu

∑
i∈I (u)

(ru,i − 〈xu, ŷi 〉)2 + λ‖xu‖22

ŷi = argmin
yi

∑
u∈U(i)

(ru,i − 〈x̂u, yi 〉)2 + λ‖yi‖22

for all u = 1, . . . , nU and i = 1, . . . , nI



MF: put everything together

x̂u = argmin
xu

∑
i∈I (u)

(ru,i − 〈xu, ŷi 〉)2 + λ‖xu‖22

ŷi = argmin
yi

∑
u∈U(i)

(ru,i − 〈x̂u, yi 〉)2 + λ‖yi‖22

for all u = 1, . . . , nU and i = 1, . . . , nI

Hum... the x̂u’s depends on the ŷi ’s that depend on the x̂u’s
that depends on the ŷi that... !



MF: put everything together

Let’s rewrite this. Put

X> =


...

...
...

x1 · · · xnU
...

...
...

 and Y> =


...

...
...

y1 · · · ynI
...

...
...


Then we consider the minimization of

F (X ,Y ) =
∑

(u,i)∈E

(ru,i − 〈xu, yi 〉)2 + λ

nU∑
u=1

‖xu‖22 + λ

nI∑
i=1

‖yi‖22

over X ∈ RnU×r and Y ∈ RnI×r jointly.

The penalization terms λ
∑nU

u=1 ‖xu‖22 + λ
∑nI

i=1 ‖yi‖22
counters overfitting



MF

F (X ,Y ) =
∑

(u,i)∈E

(ru,i − 〈xu, yi 〉)2 + λ

nU∑
u=1

‖xu‖22 + λ

nI∑
i=1

‖yi‖22

over X ∈ RnU×r and Y ∈ RnI×r jointly.
Let’s write this matricially:

F (X ,Y ) = ‖PE (R − XY>)‖2F + λ‖X‖2F + λ‖Y ‖2F

where

‖A‖F = Frobenius norm of A =

√∑
j ,k

A2
j ,k

and

PE (A) =

{
Au,i if (u, i) ∈ E

0 otherwise



Matrix Factorization

Put λ = 0 and E = {1, . . . , nU} × {1, . . . , nI}

F (X ,Y ) = ‖PE (R − XY>)‖2F = ‖R − XY>‖2F

Solution is given by the SVD (Singular Value Decomposition)
Recall that

X of size nU × r

Y of size nI × r

Then
argmin
X ,Y

‖R − XY>‖2F

is given by thresholded SVD of R



Matrix Factorization: SVD

SVD (Singular Value Decomposition)

Any matrix R ∈ RnU×nI writes

R = UΣV>

where

U is the matrix of left singular vectors (columns of U are
eigenvectors of RR>, it satisfies U>U = I

V is the matrix of right singular vectors (eigenvectors of
R>R, it satisfies V>V = I

Σ = diag[σ1, . . . , σnU∧nI ] is the diagonal matrix containing the
singular values

σ1 ≥ · · · ≥ σnU∧nI
where

σj(X ) =
√
λj(X>X ) = jth eigenvalue of X>X



Matrix Factorization: SVD

Fundamental result:

argmin
M∈RnU×nI :rank(X )=r

‖R −M‖22 = UrΣrV
>
r

where R = UΣV> is the SVD of R and

Σr = diag[σ1, . . . σr ]

Ur contains the first r columns of U

Vr contains the first r columns of V

Don’t forget that PCA = SVD of the covariance matrix



Matrix Factorization: SVD

Hence a solution of

(X̂ , Ŷ ) ∈ argmin
X ,Y

‖R − XY>‖2F

is given by
X̂ = UrΣr and Ŷ = V>r

Matrix completion can be understood as an SVD with missing
entries

With extra regularization to avoid overfitting using ridge
penalization



Matrix Factorization: algorithms

Ok. So how do I solve

F (X ,Y ) =
∑

(u,i)∈E

(ru,i − 〈xu, yi 〉)2 + λ

nU∑
u=1

‖xu‖22 + λ

nI∑
i=1

‖yi‖22

or equivalently

F (X ,Y ) = ‖PE (R − XY>)‖2F + λ‖X‖2F + λ‖Y ‖2F

???



Algorithm 1. Alternating Least-Squares (ALS)

Idea: if we knew Y we could solve X using ridge regression and
vice-versa: alternate between optimizing on X and Y with the
other matrix fixed

Alternating least-squares (ALS) algorithm

Repeat until convergence:

For each u solve the linear system:
xnewu ← solution of

∑
i∈I (u)(yiy

>
i + λI )xu =

∑
i∈I (u) ru,iyi

For each item i solve
ynewi ← solution of

∑
u∈U(i)(xux

>
u + λI )yi =

∑
u∈U(i) ru,ixu

xu ← xnewu , yi ← ynewi

Updates for xu and yi can be done in parallel

Complexity. Space: O(nur + nI r) and time: O(nur
3 + nI r

3)
per iteration. O(r3) for solving the linear systems

No need to store the complete ratings matrix



Algorithm 2. Gradient Descent (GD)

Idea: use standard gradient descent

∇xuF (X ,Y ) = λxu +
∑

i∈I (u)(〈xu, yi 〉 − ru,i )yi

∇yiF (X ,Y ) = λyi +
∑

u∈U(i)(〈xu, yi 〉 − ru,i )xu

Gradient Descent algorithm

Repeat until convergence:

For each u update

xnewu ← xu − η
(
λxu +

∑
i∈I (u)(〈xu, yi 〉 − ru,i )yi

)
For each i update

ynewi ← yi − η
(
λyi +

∑
u∈U(i)(〈xu, yi 〉 − ru,i )xu

)
xu ← xnewu , yi ← ynewi

Updates for xu and yi can be done in parallel

Complexity: O(nur + nI r) no O(r3) overhead iteration

No need to store the complete ratings matrix



Algorithm 3. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent algorithm

Repeat until convergence:

Choose (u, i) ∈ E at random

Update xu
xnewu ← xu − η(λxu + (〈xu, yi 〉 − ru,i )yi )

Update yi
ynewi ← yi − η(λyi + (〈xu, yi 〉 − ru,i )xu)

xu ← xnewu , yi ← ynewi

Complexity: O(nur + nI r) no O(r3) overhead iteration

No need to store the complete ratings matrix



Conclusion for CF using Matrix Factorization

Parameters to tune:

step-size, or learning rate η. Must be decreasing for SGD

Regularization parameter λ > 0 and number of latent factors
r . Tuned using cross-validation

There is a big problem:

F (X ,Y ) =
∑

(u,i)∈E

(ru,i − 〈xu, yi 〉)2 + λ

nU∑
u=1

‖xu‖22 + λ

nI∑
i=1

‖yi‖22

is not a convex problem

Local minimum, initialization is important

No guarantees towards a good minimum

Mostly heuristics
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A convex formulation of the matrix completion problem

Unknown matrix R of size nU × nI
If R has rank r , its degrees of freedom are r(nU + nI − r)

E ⊂ {1, . . . , nU} × {1, . . . , nI} of observed entries of R

We need |E | ≥ r(nU + nI − r) (otherwise no hope to recover R

We observe only PE (R)

We assume that the rank of R is small. So let’s penalize the rank

Tempting to consider

R̂ ∈ argmin
M∈RnU×nI

{1

2
‖PE (M − R)‖2F + λ rank(M)

}
Too hard

For Lasso we’ve found that a convex relaxation of `0 is `1

Can’t we do the same for the rank?

Yes!



A convex formulation of the matrix completion problem

rank(M) =

nU∧nI∑
k=1

1σj (M)>0 = ‖σ(M)‖0

Replace `0 by `1:

‖M‖∗ =

nI∧nU∑
j=1

σj(M)

Hence tempting to consider

R̂ ∈ argmin
M∈RnI×nU

{1

2
‖PE (M − R)‖22 + λ‖M‖∗

}
for a regularization parameter λ > 0. This is a convex problem!



Proximal gradient descent

Proximal gradient descent for the CF problem

Repeat until convergence:

M ← Sληk (M − ηk(PE (M − R)))

where Sλ is the spectral soft-thresholding operator: if M = UΣV>

SVD of M, then

Sλ(M) = U diag[(σ1 − λ)+, . . . , (σn1∧n2 − λ)+]V>

Thresholding of the singular value: the solution will be of low rank.
Many other algorithms, more memory efficient and faster



Proximal gradient descent

Convex problem: convex optimization and convergence
guarantees to a minimum

Bottleneck: an SVD is necessary at each iteration!
Complexity of an SVD O((nU ∨ nI )(nU ∧ nI )

2)

Can be reduced using partial SVD (compute only k top
singular values and vectors). Complexity is (best case)
O(n1n2k) [keyword: Lanczos algorithms]

Compute an approximate solution, given some tolerance

For remedy for large SVD is the divide and conquer principle



Collaborative Filtering, Matrix Completion

Sketch of application: image inpainting
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Collaborative Filtering, Matrix Completion

Sketch of application: image inpainting



Collaborative Filtering, Matrix Completion

Sketch of application: matrix completion



Collaborative Filtering, Matrix Completion

We only observe 35% of the picture



Collaborative Filtering, Matrix Completion
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Collaborative Filtering, Matrix Completion



Collaborative Filtering, Matrix Completion



Matrix Completion: a quick overview of groundbreaking theory

Exact reconstruction (no noise)

R̂ ∈ argmin{‖M‖∗ such that PE (M) = PE (R)}

Assume n = nU = nI for short and put m = |E |. Then under some
assumptions

No method can suceed if m ≤ crn log n. Namely, need at
least

m ≥ crn log n

observed entries to recover M and r = rank

If m ≥ crn(log n)2 then reconstruction is exact! with a large
probability

In this setting, convex relaxation is exact: no loss when
relaxing rank by ‖ · ‖∗
Gives the exact same solution as the one constrained by rank!

Convex programming incredibly powerful in this case

Compressed sensing theory



Thank you!
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