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@ Stochastic optimization
@ Stochastic Gradient
Descent (SGD)
@ Beyond SGD



Quick recap on convex optimization

We want to minimize

where £;(0) = ((y;, (xi,0)) + 36|13
@ Ridge Regression
@ Ridge Logistic Regression

@ etc.



Quick recap on convex optimization

Full (Batch) Gradient Descent
0" « 65— VE(OFT)
You've seen:
@ If f convex and L-smooth then for n, = 1/L

F(0%) - F(0.) < 2= 0:l W

- k+1
where 6, € argmin, f(6)
o Acceleration (Nesterov, Fista): rate improvement O(1/k?)
@ Linesearch
If f is also p-strongly convex, then linear convergence

09— £(0.) < (1= 1) (7(60) ~ £(0.) @




Stochastic optimization

What if n (and d) is large?
e Each iteration of a full gradient method has complexity O(nd)
@ | can't put n x d floats (32 or 64 bits) in my memory

Size of big data makes a modern computer look old: go back to
“old” algorithms

@ Idea: in machine learning, objective functions are averages of
losses



Stochastic Gradient Descent

If I choose uniformly at random [ € {1,...,n}, then

EVA0) = - 30 vie) = vro)
i=1

e V() is an unbiased but very noisy estimate of the full
gradient V£(0)

e Computation of V£;(#) only requires the /-th line of data
(O(d) and smaller for sparse data, see next)



Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm (Robbins and Monro
1951)

@ At each iteration, load a line of data chosen randomly
(requires an index for fast random access on the hard drive)
@ Compute gradient for this line of data

@ Do a descent step, using this gradient, and repeat



Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

o Input: starting point 6°, sequence of learning rates {n:}+>0
@ For t =1,2,... until convergence do

e Pick at random (uniformly) i in {1,...,n}
e Put
01‘ _ 91‘71 _ ntvf;‘(atfl)

@ Return last 6t

@ Each iteration has complexity O(d) instead of O(nd) for full
gradient methods

@ Possible to reduce this to O(s) when features are s-sparse
using lazy-updates (more on this later)




Stochastic Gradient Descent

e Note that if / is chosen uniformly at random in {1,..., n}

1 n
E[VA(O)Feal = = > V(071 = VA0
i'=1

where F; = information until iteration t (relative to random
sampling of indexes)

@ Namely, SGD uses very noisy unbiased estimations of the full
gradient

@ Learning rate n; usually chosen as n; ~ Ct~“ with
a€[1/2,1].

@ Linesearch: n; is a valid learning rate if

O —neV (%) < £i(6%) — V()13



Stochastic Gradient Descent

Polyak-Ruppert averaging (ASGD)
o Use SGD iterates {6'} but return 6t = 1 5°¢,_ %
o Computed “online”

t—1

gt Lpe1 T e (3)
t

@ Leads to better results, cf:

http://leon.bottou.org/projects/sgd


http://leon.bottou.org/projects/sgd

Stochastic Gradient Descent

Theoretical knowledge on SGD. Typical assumptions
@ Each f; is L-smooth (gradient L-lipshitz)

e f is p-strongly convex

@ Non strongly convex: rate O(1/4/t) for ASGD with
e = O(1/Vt)

@ u-Strongly convex: rate O(1/(ut)) for ASGD with
ne = 0(1/(ut))

Both SGD and ASGD are slow. Best case is O(1/t) convergence
when f is strongly convex, while O(e~**) for FG



Beyond SGD

Recent results improve this:

Bottou and LeCun (2005)
Shalev-Shwartz et al (2007, 2009)
Nesterov et al. (2008, 2009)

Bach et al. (2011, 2012, 2014, 2015)
T. Zhang et al. (2014, 2015)



Stochastic vs Batch optimization

@ Gradient descent:
ot etfl . ﬁ f; Htfl
« . ;v (01

O(nd) iteration but linear convergence O(e ') (strongly cvx
case)

@ Stochastic gradient descent:
0t « 0t — V(071

O(d) iteration but slow convergence O(1/t) (strongly cvx
case)

Do a fast algorithm with O(d) iteration exist?



Variance reduction

e Put X = Vf(#) with | uniformly chosen at random in

{1,...,n}
@ We want to use Monte Carlo samples to approximate
EX = V£(0)

@ We find out C s.t. EC is easy to compute and such that C
highly correlated with X

e Put Z, = a(X — C)+EC for a € [0,1]. We have
EZ, =aEX + (1 — a)EC

and
var Z, = a?(var X + var C — 2cov(X, C))

@ Standard variance reduction: o« = 1, so that EZ, = EX
(unbiased)



Variance reduction

Idea: combine SGD with variance reduction
0 < 01 = (a (VO — VA Zw 1)

where Vf;(pt™1) is the “last computed” gradient of V£; along the
iterations

@ o= 1/n: SAG (Stochastic Average Gradient, Bach et al.
2013)

e a =1: SVRG (Stochastic Variance Reduced Gradient, T.
Zhang et al. 2015, 2015)

e o =1: SAGA (Bach et al., 2014)



Variance reduction with SAG

Stochastic Average Gradient (SAG, Bach et al. 2013)
@ Input: starting point 6y, learning rate n > 0

@ For t =1,2,... until convergence do
o Pick at random (uniformly) i in {1,..., n}
o Put

. VALY ifi=;
gi(i) = . .
ge—1(7) otherwise

and compute

6 =6 — 15" (i)
i=1

o Return last 6t



Variance reduction with SAG

Assume
@ Each f; is L-smooth
e f is u-strongly convex
e 7 = 1/(16L) constant
@ Initialize using one epoch of SGD

Non-strongly convex case:

IS

E[f(0%) — £(6.)] < O )

Strongly convex case:
E[f(6%) — £(6,)] < O(nl,ﬁ ﬁ)exp( t( L, l’gL))

Improves a lot FG and SGD algorithms



Variance reduction

e Complexity O(d) instead of O(nd) at each iteration
@ Choice of a fixed step-size n > 0 possible

@ But extra memory required: need to save all the previous
gradients.

Hopefully
Vi) = £ (yi, (xi,0))xi,

so only need to save {(y;, (xi,0)). Memory footprint is O(n)
instead of O(nd). If n =107, this is 76 Mo



Variance reduction with SAG

Comparison of convergence [Le Roux el al. 2012]

Objective minus Optimum
Objective minus Optimum

T T T T
0 0 20 30 40 50 0 10 20 30 40 50
Effective Passes

Objective minus Optimum

Objective minus Optimum




Some practical remarks: file indexing

Now some practical problems / tricks around this

@ Need to index large data files to be able to read lines at
random fast

Many tools to do this. In Hadoop® there is the
ArrayFile.Reader that does that. It's only (roughly) 3x
slower than a sequential read of the file.

Stochastic optimization algorithm also work when using
random shuffling of lines at beginning of each epoch: allows
to further improve 1/0.

o hErEED

http://hadoop.apache.org



Some practical remarks: lazy updates

Feature vectors are usually very sparse (words counts). Complexity
of the iteration of a stochastic optimization algorithm can reduced
from O(d) to O(s), where s is the sparsity of the features.
Important since d ~ 10° while s ~ 103

For minimizing
LS by, 0,0) + 2 0)2
n pt yl7 3 N 2 2
an iteration of SGD writes
0" = (1 —neN)0" " — el (vi, (xi,0°71))xi

If x; is s sparse, then computing 1:¢'(y;, (x;, 0~1))x; is O(s), but
(I —n:A)ft —1is O(d) ...



Some practical remarks: lazy updates

Trick: put 0 = s8¢, with s; € [0,1] and sy = (1 — ¢ \)se—1

0t = (1- 7]t>\)9t_1 - M'(yn <Xi?9t_1>)xf

becomes

seft = (1- ntA)st—lﬁtil - mﬁl()/i? st—1(Xi, 6t71>)x"
=585 — el (yiy se—1(xi, B )X

so the iteration is now

pt=pt1 - %fl(yi, se—1(x;, B 1))xi
t

which has complexity O(s).



Some practical remarks: lazy updates

@ Just check that s; is not too small once in a while, in this case
put s; = 1 and update 6; and (;

@ Write the algorithm using only 3, return s;3; in the end
Now, complexity of one iteration of a stochastic algorithm is O(s),

while an approach based on FG methods is O(nd) without using
sparsity



Some practical remarks: cross-validation

Choice of penalization parameter A by V-fold with SGD
Quick recap on V-fold:
@ Take V =5 or V = 10. Pick a random partition I1,..., Iy of
{1,...,n}, where [I,| = {; forany v=1,...,V

k folds (all instances)

»
> o

A

fold

vy

D D
C o |

' | testing fold
| =1




Some practical remarks: cross-validation

@ | don't load the full data in memory
@ | can't use V-Fold this way when I'm using an SGD-based
solver

Simple solution: when picking a line i at random in the
optimization loop, its fold number is given by %V

@ Pick i uniformly at random in {1,...,n}

@ Putv=i%V

e For v/ =1,...,V with v/ # v: Update 8,/ using line i

e Update the testing error of 0, using line i



Cross-validation: warm starting

@ So | have many optimization problems to solve for choosing A!

@ If I'm using V-Fold cross-validation, and a choose a set
AN ={\1,...,A\m} of values for A, it is V x |A| problems

@ But solutions HA,\j_l and 9>\j are going to be close when \;_;
and \; are

Use warm starts:

@ Fix parameters \; < Ay < --- < Ay

@ Put 6y =0 (I don't know where to start)
e Form=M,...,1

o Put A=\,
o Solve the problems starting at g for this value of A (on each
fold)

o Keep the solutions f (test it, save it...)
o Put fy « 0

This allows to solve much more rapidly the sequence of problems



© Collaborative Filtering
@ Amazon, Google, Netflix
@ Netflix Prize
@ Matrix completion



Collaborative Filtering

What is collaborative filtering?

Many users Many items

@ Based on many observed user-item interactions (rating,
purchase, click)

@ Predict new interactions

@ Does Bob like strawberries?



Collaborative Filtering

Amazon.com recommends products based on your purchases,
browsing history

@ but based on the purchases and history of other users too

Ces recommandations sont basées sur les articles gue vous possédez et plus encore.

afficner: | Nouveautés | Bientbt

1 Hypothermie : Une enquéte du commissaire Erlendur Sveinsson
de Arnaldur Indridason (19 mai 2011)
Moyenne des commentaires client : ¢

En stock

™ (60

Prix conseillé : EUR%30
Prix : EUR 6,94

(@2, Ajouter aupanier | | Ajouter 3 votre liste d'envies |
87 neufs et d'occasion & partir de EUR 0,92

Vous l'avez déjé Vous n'étes pas intéressé (%) Y x et Evaluez cet article
Recommandé parce que vous avez acheté L'homme du lac et plus (Modifier)




Collaborative Filtering

Google News recommends news based on your browsing activity

@ but on the browsing activity of other users too

Ala une

Dans son édition & paraitre mercred, « Le canard enchainé » publie le verbatim de l'enregistrement d'une réunion  I'Elysée, réalisé en 2011 par Patrick Buisson,
alors conseiller de Nicolas Sarkozy, au moyen d'un dictaphone. Patrick Buisson étaitle

Un enregistrement de Buisson 4 Elysée retranscrit dans le Canard

Autres
Un aprés-midi & IElysée enregistré par Patrick Buisson Patrick Buisson »
Citée & de nombreuses reprises : Sarkoleaks : Le Canard Enchainé publie le script des Nicolas Sarkozy »

oo Bl sl e & g S

Ukraine : John Kerry a Kiev, Poutine sort de son silence

Le président russe Vladimir Poutine exclut pour le moment une intervention armée. A Kiev, le secrétaire d'Etat américain John Kerry dénonce un "acte d'agression”. A
VENIR : Début du direct : le 12/03/2012 & 10h55. EN COURS : Mis a jour il y a quelques ..

»

Quand Patrick Buisson enregistrait Nicolas Sarkozy R

WM Paris

n cyber<jihadiste condamné a un an de prison ferme v

Il traduisait les revues de propagande d'Al Qaida et se faisait appeller Abou Siyad Al-Normandy sur le site jihadiste quiil animait. Romain Letellier, un musulman converti
27 ans, a ét condamné mardi & un an de prison ferme. Le tribunal correctionnel de

Le sondage non publié sur DSK n'excite pas les strauss-kahniens
Le Parisien Magazine n'a pas publié les réactions des proches de DSK & un sondage BVA que Ihebdomadaire a choisi de ne pas divulguer. L'Express les a contactés.
Imnrlmer Zoom moins. Zoom plus. 15. Voter (1). Le sondage non publié sur DSK n'excite

yol : 1a vidéo poi du Barga en ason...

Aloccasion de fannonce de son départ en fin de saison, le FC Barcelone a rendu hommage  Carles Puyol a travers une émouvante vidéo. Sur un fond sonore
poignant, on y voit notamment les premiers pas du joueurs avec le maillot blaugrana.

Pacte de responsabilité: le projet du patronat rejeté par les syndicats

Paris (AFP) - Le patronat a présents mardi un projet d'accord sur les contreparties du *pacte de respansabilits®, essuyant un tir groupé des syndicats qui lont jugé
totalement insufiisant, 2 la veille 'une deuxieme séance de discussion enre les partenaires



Collaborative Filtering

Netflix predicts the rating you'd give to a movie

@ using all the ratings given by all users

Watch Just for Instant Suggestions
N E I F I- I x Instantly v l:(ids - Queue for You

Rate what you've seen to discover suggestions for you

, e
NEMIRINE2

)

E

ook O

1 6.6 6 & ¢ e ¢ 4.6 6 & 1. 0. 6.6 6 ¢
Hated it! Loved it!

@ 60% of Netflix's DVD rentals due to recommandations



Collaborative Filtering

Netflix predicts the rating you'd give to a movie

@ using all the ratings given by all users

Sci-Fi & Fantasy Inception
| 2010 148 minutes

Incept| Dom Cobb earns a tidy sum infiltrating the dreams ¢

Becaus COrporate titans to steal their most closely held secr

Memen Starring: Leonardo DiCaprio, Joseph Gordon-Levif
Th~ Director: Christopher Nolan
Bal Genre: Sci-Fi & Fantasy

Availability: DVD and Blu-ray

WA AT 4.4 Ourbest guess for LESTER
' Recommended based on your interest in:Batman

* * * * "l‘ Begins, The Matrix and Memento

Not Interested

@ 60% of Netflix's DVD rentals due to recommandations



Collaborative Filterin flix

Ravis de vous revoir !
Profitez de films et

séries TV ou et quand
vous le souhaitez.

Forfaits a partir de 7,99 € par mois.
Le premier mois est gratuit !

Terminer l'inscription

[0 ] - E»

. Wi, o,
Xbox, PC, Mac, smartphone, tablette et bien diffusés en streaming figne a tout moment.
plus..

Obtenir de Faide Notre société Promiers pas



Collaborative Filtering: Netflix Prize




Collaborative Filtering: Netflix Prize

How can we Let’s have a

improve contest!
Cinematch?

How about
S1 million?




Collaborative Filtering: Netflix Prize

Netflix Prize

@ October 2, 2006

@ Dataset: 100 million ratings , ny =480K users, n; =18K
movies

@ only 1.1% of the matrix is filled!
@ Goal: create a computer code that predicts ratings

@ $1m grand prize for anyone beating Cinematch accuracy by
10%

@ 5000 teams over 150 countries participated



Collaborative Filtering, Matrix Completion

Collaborative Filtering, Matrix completion: fill unobserved
entries of a matrix

x 7 7 7 x ?
77 x ox 707
x 7 7 x 7 7
7?7 x 77 x
x 7?7 7 7 72
77 x x 707

@ Unknown matrix M has size ny x ny
@ Observe m < nyn; entries (100m < 8.64M for Netflix)

@ Impossible!



Collaborative Filtering

There is hope:

@ Personal preferences are correlated: if Alice likes A and B and
Bob likes A, B and C, then Alice is more likely to like C

@ There are latent factors that describe the data in a much
lower dimensional space. Groups of users, groups of movies,
factors that explain the taste of users. High-dimensionality
but hidden low-dimensional structure

@ The hidden matrix is (approximately) low-rank
Collaborative Filtering task:
e discover patterns (low-dimensional hidden structure, latent
factors)
@ use these patterns for prediction of new user-item interactions

@ Do not necessarily use item or user attributes (demographic
information, author, genre, cast, plot, etc.)



@ Biases

e CF as classification /
regression

e K-NN

@ Main Approaches
@ Definitions
@ Measures of success



Collaborative Filtering

Given:
@ Users ue {1,...,ny}
o Itemsie{1,...,n}
@ When u has an interaction with item /, (watches the movie,

clicks on a banner, buys a product), he enters a scalar rating
ry,i (number of clicks, rating of a movie, etc.)

@ Set E of pairs (u, i) of observed ratings r, ;

Matrix completion problem

M =

~ NV

N NN

~N =N
~



Collaborative Filtering

Measures of success. Decompose E = Eiyain U Eiest into training
and testing respectively. r,; = ground truth and 7, ; = estimated
rating

@ Root Mean Square Error

1
RMSE = > (rui = Pui)?

|Ete5t’ (uvi)eEtest

@ Mean Absolute Error

@ Ranking error: fraction of true top-5 preferences are in my
predicted top 57



Biases

@ Remove biases from the ratings

@ Some users give systematically higher ratings

@ Some items gets systematically better rates (old movies...)
@ Don't forget that PCA needs centering

Remove bias
Fu,i = ru,i — bu,i

Let's denote
e U(i) the set of users who rated item i

@ /(u) the set of items rated by user u



Biases

Let's compute means! We can choose b, ; as one of the following:

@ Global mean

@ Item's mean rating

@ User's mean rating
by ( ‘ E Fu,i
iel(u)
@ Item’s mean rating + user's mean deviation from item mean
1

bui=bi+ o~ > (rui — by)
i, 2,



Interpolating means

@ Some users have much more ratings than other (1000 x
more!)

@ Users with a small numbers of ratings are not as reliable as
ones: more noisy. It's hard to trust a mean with only one
rating!

@ Interpolate between a global estimate and an estimate from
user's data

Interpolate to have a better bias estimation:
G o . i)
a+[l(u)] a+[l/(u)|
where we recall that b is the global mean

1
bzﬁ Z ru,,-

and b, is the user's mean

1
bu — u,i
T

by



CF as classification / regression

CF is a set of ny classifications / regression problem: one for each
I € {1,...,”/}
e Consider a fixed i

@ Treat each user as a vector (with many missing values) or
ratings of all item except i

@ The class of each user with respect to i is given by the user’s
rating

@ Prediction of the rating 7, ; = classication of a user's vector
Fu,i

@ Reduces CF to the well-known classification problem

@ But, with a huge number of classes!

@ This approach does not take advantage of the problem
structure



K-NN

K-Nearest Neighbor Method (K-NN) most widely used family of
methods

@ item-based or user-based

e for product recommandation: item-based

@ represent each item as a vector of user’s ratings with many

missing values r, ; = [2,7,1,7,7,7,2,1,7,7,7,5]

Idea: users rate similar items similarly. In order to predict a rating
ry,i for user u and item i:

@ Compute similarity between i and every other items

@ Find the K items rated by u most similar to i

@ Compute weighted average of these ratings



K-NN: Similarity measures

How to measure similarity between items?

@ Cosine similarity

<ro,i7 ro,i’>

[I7e.illllre i

d(reisrei) =

@ Pearson correlation coefficient

<r-,i - Fo,h lo i’ — Fo,i’>

[re,i — Foillllre,ir — Foirl

d(reisreir) =

@ Inverse Euclidean distance

1

i = el

d(re,is reir)

Vectors r, j contains many missing values: compute these
similarities over subets of users that rated both items / and /’



K-NN

How to choose the K-nearest neighbors?

@ Select the K items with largest similarity score to item 7/,
among the items rated by v, denoted N(i, u)

@ Prediction given by

rui = bu,i + E Wi,j(ru,i’ - bu,i/)

i’eN(i,u)
where w; i weights
Example of weights:
@ Equal weights
1
T N, 7)
@ Similarity weights
d(ro,h ro,i’)

WI',I./ =

Zi”eN(i,u) d(reis re,i)



K-NN

Event better: user optimized weights.
@ Choose weights that best predict other known ratings of /
among all users that rated i
@ Corresponds to many small linear regression problems

o Needs to store many weights O(n?)
Conclusion for K-NN methods
Easy to implement
No training time
Flexible

But need to store many parameters (all item, vectors, weights
in memory)

@ Don't exploit hidden low-dimensional structure



© Matrix Factorization
@ Intro
@ Formulation
o Link with PCA
@ Alternating Least-Squares
@ Gradient Descent
@ Stochastic Gradient
Descent



MFE: if | know the item’s features

Matrix Factorization (= MF)

@ Assume that we know features about the items
y; = [cast, year, genre,---] € R"

foralli=1,...,n.
o r features for each item
@ We want the users parameters x, for u=1,...,ny

Linear regression

Xy € argmin Z (rui — (xu, yi))?.
el (u)
Even better: ridge regression

X, = argmin Z (rui— <Xu,)/i>)2 + )\HXUHE
e ()

@ But we don't want to construct ad-hoc features y; for items
@ Not a good idea for building recommandations



MF: if | know the user's features

@ Assume that we know user’s features x, for all u =1,..., ny.
o r features for each user

@ We want the items features y; for i=1,...,n
Once again: linear regression
N . 2
gi € argmin > (i — (xu, i)
yi ueU(i)
Even better: ridge regression

gi € argmin Y (rui — (0, 7)) + Alyil3
Yi .
ueU(i)

@ But we can’t construct ad-hoc features x, for users

@ Still not a good idea for building recommandations



MF: put everything together

@ We don't want to construct ad-hoc features y; for items

@ We can't construct ad-hoc features x, for users
So let’s learn items and users features at the same time!

e Putting things together

X, = argmin E (rui — <Xua.)l}l'>)2 + )‘||Xu||§
X
Yiel(u)

yi = argmin Z (rui — (Rus yi))? + Allyill3
Y ueu(i)

forallu=1,...;,nyandi=1,... n



MF: put everything together

Ry = argmln Z Fui — (xu, 91)) + Allxull3

y,—argmln Z (rui = (Ru, i) + Alyil3

forallu=1,...,nyandi=1,...,n

@ Hum... the X,'s depends on the y;'s that depend on the X,’s
that depends on the y; that... !



MF: put everything together

Let's rewrite this. Put

X7 = Xt -+ Xp,| and Yyl = Yi o Y

Then we consider the minimization of
FOX Y)Y = ) (rui— (xuyi) +AZ [EAE +AZ yill3
(u,i)EE

over X € R"*" and Y € R™"*" jointly.

@ The penalization terms A Y"1 |Ix, |13 + A X7, |lvill3
counters overfitting



F(X7 Y): Z (ru,i_ Xu;)/l +)‘Z”XUH2+)‘ZH)/IH2

(u,i)EE

over X € R"*" and Y € R™*" jointly.
Let's write this matricially:

F(X,Y) = Pe(R— XY T)E + MIXIE + Y7

|A|lF = Frobenius norm of A = /Z Ajgk
J.k

Asi if (ui)€eE

0 otherwise

where

and

Pe(A) = {



Matrix Factorization

Put A=0and E={1,...,ny} x{1,...,n}
FIX,Y) = [IPe(R=XYT)|E = |R-XYT|}

Solution is given by the SVD (Singular Value Decomposition)
Recall that

e X of size ny X r

@ Y of size ny x r
Then

argmin |R — XY '||2
X,Y

is given by thresholded SVD of R



Matrix Factorization: SVD

SVD (Singular Value Decomposition)
Any matrix R € R"*" writes

R=UZV'

where

e U is the matrix of left singular vectors (columns of U are
eigenvectors of RRT, it satisfies UT U = I

e V is the matrix of right singular vectors (eigenvectors of
RTR, it satisfies V'V = |

e Y =diag[o1,...,0nynn] is the diagonal matrix containing the
singular values

012 " 2 Onyan,

a;(X) = /A (XTX) = jth eigenvalue of XX

where



Matrix Factorization: SVD

Fundamental result:

argmin IR - M|3=UX,V,
MER™ XM :rank(X)=r
where R = UX VT is the SVD of R and
e ¥, =diagfo1,...o0/]
@ U, contains the first r columns of U
@ V, contains the first r columns of V

@ Don't forget that PCA = SVD of the covariance matrix



Matrix Factorization: SVD

Hence a solution of

(X,Y) € argmin||R — XY |2
X,Y

is given by A A
X=UX, and Y=V

@ Matrix completion can be understood as an SVD with missing

entries
e With extra regularization to avoid overfitting using ridge
penalization



Matrix Factorization: algorithms

Ok. So how do | solve

FX,Y)= > (rui— (xuy) +)\Z||Xu||2+)\ZHYI||2

(u,)€E

or equivalently

F(X,Y) = Pe(R — XY )E +MIXIE + A YIIE

77



Algorithm 1. Alternating Least-Squares (ALS)

Idea: if we knew Y we could solve X using ridge regression and
vice-versa: alternate between optimizing on X and Y with the
other matrix fixed

Alternating least-squares (ALS) algorithm

Repeat until convergence:

@ For each u solve the linear system:
x)®" <— solution of Z,e, (y,-y,-T + M)x, = Ziel(u) o S
° For each item i/ solve
y" <= solution of >-,c (xuqu + ADyi = > ueu(i) MwiXu
@ Xy — X, yi < y"

@ Updates for x, and y; can be done in parallel
o Complexity. Space: O(nyr + nyr) and time: O(n,r3 + n;r3)
per iteration. O(r3) for solving the linear systems

@ No need to store the complete ratings matrix



Algorithm 2. Gradient Descent (GD)

Idea: use standard gradient descent
© Vi, F(X,Y) = Axu+ iy (xu yi) — rui)yi
° v Yi (Xa Y) - )‘yl + ZuEU(/ (<Xuvyf> - ru,i)Xu

Gradient Descent algorithm

Repeat until convergence:
@ For each u update
Xy = Xy — n()\xu + Ziel(u)(<xmyi> - ru,i))/i)
@ For each i update
yre = yi = (i + Lueug (G i) = uidxa)
@ Xy — X, yi < y"

@ Updates for x, and y; can be done in parallel
e Complexity: O(ny,r + njr) no O(r®) overhead iteration
@ No need to store the complete ratings matrix



Algorithm 3. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent algorithm

Repeat until convergence:
@ Choose (u,i) € E at random
e Update x,
xg® = xu — N(Axy + ((Xu, i) — rui)yi)
e Update y;
Y = yi = n(Ayi + (X, yi) — fui)xu)
@ Xy — X, yi < yV

e Complexity: O(n,r -+ njr) no O(r3) overhead iteration

@ No need to store the complete ratings matrix



Conclusion for CF using Matrix Factorization

Parameters to tune:
@ step-size, or learning rate 1. Must be decreasing for SGD

@ Regularization parameter A > 0 and number of latent factors
r. Tuned using cross-validation

There is a big problem:

ny ny
FOGY) = D (rui = () A Ixall3 + 2 lyill3
(u,i)EE u=1 i=1
is not a convex problem
@ Local minimum, initialization is important
@ No guarantees towards a good minimum

@ Mostly heuristics



@ A convex formulation
@ Convex relaxation for the
rank
@ Proximal gradient descent



A convex formulation of the matrix completion problem

@ Unknown matrix R of size ny x ny

@ If R has rank r, its degrees of freedom are r(ny + nj —r)

e EC{l,...,ny} x{1,...,n;} of observed entries of R

@ We need |E| > r(ny + n; — r) (otherwise no hope to recover R
e We observe only Pe(R)

We assume that the rank of R is small. So let's penalize the rank
@ Tempting to consider
N 1
R € argmin {fHPE(M —-R)|IZ + )\rank(/\/l)}
MER"UX"/ 2

@ Too hard
@ For Lasso we've found that a convex relaxation of £j is £1
@ Can't we do the same for the rank?

Yes!



A convex formulation of the matrix completion problem

ny/Any

rank(M) = Z Lo, (my>0 = o (M)llo
k=1

Replace £y by /1:

niAny

ML= oj(M)

Jj=1

Hence tempting to consider

N . 1
Re argmin {SIPe(M—~R)IZ -+ AIMl. }
MERH,XnU 2

for a regularization parameter A > 0. This is a convex problem!



Proximal gradient descent

Proximal gradient descent for the CF problem

Repeat until convergence:
o M« Syp (M — mi(Pe(M — R)))

where Sy is the spectral soft-thresholding operator: if M = ULV T
SVD of M, then

S\(M) = Udiag[(o1 — N4, -, (Omam — N4 ]V

Thresholding of the singular value: the solution will be of low rank.
Many other algorithms, more memory efficient and faster



Proximal gradient descent

@ Convex problem: convex optimization and convergence
guarantees to a minimum

@ Bottleneck: an SVD is necessary at each iteration!
Complexity of an SVD O((ny V ny)(ny A np)?)

@ Can be reduced using partial SVD (compute only k top
singular values and vectors). Complexity is (best case)
O(n1nyk) [keyword: Lanczos algorithms]

e Compute an approximate solution, given some tolerance

@ For remedy for large SVD is the divide and conquer principle



Collaborative Filteri Matrix Completio
Sketch of application: image inpainting
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Collaborative Filtering, Matrix Completion
Sketch of application: image inpainting
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Sketch of application: image inpainting




Collaborative Filtering, Matrix Completion
Sketch of application: image inpainting




Collaborative Filtering, Matrix Completion

Sketch of application: matrix completion




Collaborative Filtering, Matrix Completion

We only observe 35% of the picture




Collaborative Filtering, Matrix Completion
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Collaborative Filtering, Matrix Completion
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Collaborative Filtering, Matrix Completion




Matrix Completion: a quick overview of groundbreaking theory

Exact reconstruction (no noise)
R € argmin{||M||, such that Pg(M) = Pg(R)}

Assume n = ny = n; for short and put m = |E|. Then under some
assumptions
@ No method can suceed if m < crnlog n. Namely, need at
least
m > crnlogn

observed entries to recover M and r = rank

e If m > crn(log n)? then reconstruction is exact! with a large
probability

@ In this setting, convex relaxation is exact: no loss when
relaxing rank by || - ||«

@ Gives the exact same solution as the one constrained by rank!

@ Convex programming incredibly powerful in this case

o Compressed sensing theory



Thank you!
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